首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8348篇
  免费   941篇
  国内免费   606篇
电工技术   247篇
综合类   839篇
化学工业   1585篇
金属工艺   889篇
机械仪表   362篇
建筑科学   1343篇
矿业工程   425篇
能源动力   123篇
轻工业   581篇
水利工程   396篇
石油天然气   293篇
武器工业   71篇
无线电   629篇
一般工业技术   1461篇
冶金工业   299篇
原子能技术   41篇
自动化技术   311篇
  2024年   13篇
  2023年   98篇
  2022年   189篇
  2021年   222篇
  2020年   214篇
  2019年   240篇
  2018年   264篇
  2017年   333篇
  2016年   345篇
  2015年   328篇
  2014年   512篇
  2013年   509篇
  2012年   615篇
  2011年   685篇
  2010年   463篇
  2009年   550篇
  2008年   517篇
  2007年   582篇
  2006年   535篇
  2005年   478篇
  2004年   378篇
  2003年   345篇
  2002年   270篇
  2001年   208篇
  2000年   166篇
  1999年   131篇
  1998年   111篇
  1997年   104篇
  1996年   94篇
  1995年   79篇
  1994年   59篇
  1993年   37篇
  1992年   53篇
  1991年   37篇
  1990年   21篇
  1989年   22篇
  1988年   26篇
  1987年   14篇
  1986年   8篇
  1985年   12篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1976年   1篇
  1974年   1篇
排序方式: 共有9895条查询结果,搜索用时 62 毫秒
1.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
2.
For the purpose of developing biodegradable magnesium alloys with suitable properties for biomedical applications, Mg–Zn–Ca–Cu metallic glasses were prepared by copper mold injection methods. In the present work, the effect of Cu doping on mechanical properties, corrosion behavior, and glass-forming ability of Mg66Zn30Ca4 alloy was studied. The experimental findings demonstrated that the incorporation of Cu decreases the corrosion resistance of alloys, but increases the microhardness and degradation rate slightly. However, the addition of a trace amount of Cu can make the samples have antibacterial properties. Therefore, Mg–Zn–Ca–Cu has great advantages in clinical implantation and is the potential implant material.  相似文献   
3.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
4.
Many database applications currently deal with objects in a metric space. Examples of such objects include unstructured multimedia objects and points of interest (POIs) in a road network. The M-tree is a dynamic index structure that facilitates an efficient search for objects in a metric space. Studies have been conducted on the bulk loading of large datasets in an M-tree. However, because previous algorithms involve excessive distance computations and disk accesses, they perform poorly in terms of their index construction and search capability. This study proposes two efficient M-tree bulk loading algorithms. Our algorithms minimize the number of distance computations and disk accesses using FastMap and a space-filling curve, thereby significantly improving the index construction and search performance. Our second algorithm is an extension of the first, and it incorporates a partitioning clustering technique and flexible node architecture to further improve the search performance. Through the use of various synthetic and real-world datasets, the experimental results demonstrated that our algorithms improved the index construction performance by up to three orders of magnitude and the search performance by up to 20.3 times over the previous algorithm.  相似文献   
5.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
6.
The features of crystal structures, thermo-mechanical properties and their dominant mechanisms of weberites RE3NbO7 were studied as high-temperature oxides. We concentrated on connections between structures and thermo-mechanical properties, the influences of bond lengths, lattice distortion degrees and microstructures on these properties were estimated. The shortening of bond length and increment of bonding strength would lead to the increase of mechanical properties. The Vickers hardness (4.5-7.8 GPa) and toughness (0.5-1.6 MPa·m1/2) of weberites RE3NbO7 are enhanced by grain refinement and increment of bond strength, while crystal structures, bond lengths, and lattice distortion degrees influenced their Young's modulus (100-170 GPa). Nano-indentation was applied to test the influence of microstructures on modulus and hardness. The dominant mechanisms for mechanical properties and thermal conductivity were proposed, which was conducive to properties tailoring and engineering applications of weberites RE3NbO7 oxides.  相似文献   
7.
The computational fluid dynamics (CFD) and kinetic-based moment methods coupled approach is adopted to simulate the bulk copolymerization of styrene–acrylonitrile (SAN) in a stirred tank reactor. Numerical simulations are carried out to investigate the impacts of impeller speed, monomer ratio, initiator ratio, and initial reaction temperature on the copolymerization process and product properties. Particularly, the Chaos theory is selected as a criterion for evaluating the occurrence of the thermal runaway. The Flory's and Stockmayer's distributions are employed to calculate chain length distribution and copolymer composition distribution of copolymer. The simulation results highlight that the appearance of thermal runaway can be postponed by properly increasing the rotation speed, decreasing the initiator loadings, initial acrylonitrile contents and initial reactor temperature. Furthermore, significant differences exist in the product properties that predicted by the ideal and non-ideal models, which demonstrates that the temperature heterogeneity plays a crucial role in SAN copolymerization. This study could offer references for the safe operation and design of polymerization processes.  相似文献   
8.
The aim of this study was to investigate the structure and corrosion resistance of amorphous, amorphous‐crystalline, and crystalline Mg67Zn29Ca4 alloy for biodegradable applications. This paper presents a preparation method and results of the structural characterization and corrosion resistance analysis of the material. Samples were prepared in the form of 3 mm diameter rods. The structure of the alloy was examined with the use of X‐ray diffractometry and scanning electron microscopy. The thermal properties of the samples were examined with differential scanning calorimetry (DSC). Results of DSC analysis were used to determine heat treatment temperatures, allowing to obtain different fractures of crystalline phase in the material. Corrosion resistance of heat‐treated samples was investigated by immersion tests and electrochemical measurements performed in the simulated body fluid. The X‐ray diffraction results confirmed that the prepared Mg67Zn29Ca4 alloy's structure is fully amorphous. After heat treatment, samples with different fractions of amorphous phase in the structure were obtained. Immersion tests of the samples showed that the structure significantly influenced corrosion resistance in examined materials. It should be pointed out, that certain amounts of crystalline phase in amorphous matrix can greatly improve the corrosion resistance of Mg67Zn29Ca4 alloy.  相似文献   
9.
通过粉末冶金法制备了Ti-xCr、Ti-yCu及Ti-xCr-yCu钛基材料,研究了Cr、Cu含量对其相组成、显微组织、压缩屈服强度、弹性模量以及切削加工性能的影响规律。结果表明:随Cr含量的增加,Ti-xCr钛基材料依次出现了Ti_4Cr、TiCr_2及Cr相,其压缩屈服强度表现出先增大后减小的趋势,当Cr含量为10%时其屈服强度达到最大值(710 MPa),同时,添加Cr元素有利于降低钛基材料的弹性模量,最低可达25 GPa。添加Cu元素的钛基材料,随Cu含量的增加,Ti_2Cu相增加,并且显微组织细化,屈服强度降低;弹性模量受Cu含量影响较小而受烧结温度影响较大。添加Cr和Cu元素的钛基材料,其显微组织主要为网篮组织,弹性模量低于纯钛,其中添加Cu元素有利于细化层片,添加Cr元素有利于细化等轴组织。此外,Cr含量为5%时,钛基材料具有较佳的切削加工性能。  相似文献   
10.
The determination of elastic properties at application temperature is fundamental for the design of fibre reinforced ceramic composite components. An attractive method to characterize the flexural modulus at room and high temperature under specific atmosphere is the nondestructive Resonant Frequency Damping Analysis (RFDA). The objective of this paper was to evaluate and validate the modulus measurement via RFDA for orthotropic C/C-SiC composites at the application temperature. At room temperature flexural moduli of C/C-SiC with 0/90° reinforcement were measured under quasi-static 4-point bending loads and compared with dynamic moduli measured via RFDA longitudinally to fibre direction. The dynamic modulus of C/C-SiC was then measured via RFDA up to 1250°C under flowing inert gas and showed an increase with temperature which fitted with literature values. The measured fundamental frequencies were finally compared to those resulting from numerical modal analyses. Dynamic and quasi-static flexural moduli are comparable and the numerical analyses proved that bending modes are correctly modeled by means of dynamic modulus measured via RFDA. The nondestructive RFDA as well as the numerical modeling approach are suitable for evaluation of C/C-SiC and may be transferred to other fibre reinforced ceramic composite materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号